Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fines migration and mineral reactions as a mechanism for CO2 residual trapping during CO2 sequestration

Authors: Jiachao Ge; Xiaozhou Zhang; Furqan Le-Hussain;

Fines migration and mineral reactions as a mechanism for CO2 residual trapping during CO2 sequestration

Abstract

Abstract This study investigates fines migration and mineral reactions as a mechanism for CO2 residual trapping. We perform imbibition experiments using a sintered glass core and seven Berea sandstone cores. The cores receive four injection stages: water, CO2-saturated water, water-saturated CO2, and finally water or CO2-saturated water. During the second injection stage, the quantity of CO2-saturated water is altered to induce various degrees of fines migration and mineral reactions. These effects are found to yield residual CO2 saturations of 16%, 22% and 23% for zero, 25 and 50 pore volumes of CO2-saturated water injection, respectively. These percentages are 6–7% greater than if neither fines migration nor mineral reactions were present. This is attributed to pore plugging caused by fines migration and mineral reactions, impeding the imbibing water from displacing CO2 in the plugged pores. In addition, CO2-saturated water imbibition is found to increase residual CO2 saturation by 26–30% over that resulting from water imbibition. This is attributed to the CO2 dissolution effect during water imbibition. We therefore conclude that fines migration and mineral reactions is a CO2 residual trapping mechanism during CO2 sequestration.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 1%