Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cork Open Research Archive (CORA)
Article . 2021
License: CC BY NC ND
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sea level rise changes estuarine tidal stream energy

Authors: Shengyang Chen; Gregorio Iglesias; Gregorio Iglesias; Danial Khojasteh; Stefan Felder; M. Reza Hashemi; William Glamore;

Sea level rise changes estuarine tidal stream energy

Abstract

Abstract Worldwide, many estuaries have the potential to harness tidal stream energy via the conversion of current velocities into a consumable energy source. However, the effects of future sea level rise on the tidal stream energy resource within different estuary types are largely unknown. To address this knowledge gap, 978 idealised hydrodynamic simulations were carried out to first identify estuary types and the location of hotspots within them that are promising for tidal energy exploitation in present-day conditions, and then provide insights into the altered tidal stream energy of different estuary types under various future sea level rise and river inflow scenarios. The results indicate that, under sea level rise, the tidal stream energy of prismatic estuaries reduces more than that of converging estuaries. This implies that estuaries that are currently worth exploiting for tidal power may cease to be in the future due to accelerating sea level rise. Further, as sea level rise may bring about geomorphic adjustments, the spatial energy patterns within an estuary may shift and optimal energy sites may be eliminated or displaced. These climate change effects pose a serious challenge for the management of tidal energy generation in future. In this context, the findings of this study are of practical significance for decision-makers in designing long-term strategies for the development of tidal energy installations in estuaries under rising mean sea levels.

Country
Ireland
Related Organizations
Keywords

Estuary, Tidal energy, Climate change, Hydrodynamic modelling, Marine renewable energy, Tidal power

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%