Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impacts of gas properties and transport mechanisms on the permeability of shale at pore and core scale

Authors: Wei Wei; Zhenhua Tian; Reza Rezaee; Shangwen Zhou; Jianchao Cai; Jianchao Cai; Chenhao Sun;

Impacts of gas properties and transport mechanisms on the permeability of shale at pore and core scale

Abstract

Abstract In this work, new integrated permeability models for micro-nanopores and fractal shale matrixes are constructed by coupling different transport mechanisms, adsorption phenomenon, and real gas effect. The applicability of these proposed models is verified by mathematical models, molecular dynamic simulation results, and experimental data. The impacts of gas properties on gas transport at the pore scale and the contributions of different transport mechanisms on gas flow at pore and core scale are analyzed. The apparent permeability at pore scale and core scale decreases with increasing pressure. The bulk gas transport in micropores is strongly reduced because of the adsorption of methane molecules. The real gas effect enhances both transition diffusion and surface diffusion under high pressure at pore scale. However, the effect of the real gas effect on the slip flow permeability is negligible. At pore scale, surface diffusion, transition diffusion, and slip flow successively dominate the gas transport with increasing pore diameter under lower pressure. At core scale, the dominating transport mechanism under lower pressure is mainly under the control of pore size distribution and gas type. For larger pores and shale matrixes, the Darcy's law is still effective for describing the gas permeability under higher pressure.

Country
Australia
Related Organizations
Keywords

660, 550, 621

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%