Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy virtual networks based on electric vehicles for sustainable buildings: System modelling for comparative energy and economic analyses

Authors: Barone G.; Buonomano A.; Forzano C.; Giuzio G. F.; Palombo A.; Russo G.;

Energy virtual networks based on electric vehicles for sustainable buildings: System modelling for comparative energy and economic analyses

Abstract

This paper explores the implementation of the Building To Vehicle To Building (V2B2) scheme in European Countries, by evaluating the influence of weather conditions and local energy market prices on its energy and economic performance. The use of electric vehicles as energy vectors among buildings belonging to a virtual cluster is the key aspect of the V2B2 scheme: by exploiting mobile electric storage devices, renewable electricity produced by building integrated PV panels is shared among diverse users and consumed off-site. This novel energy management scheme has a twofold aim: i) promoting energy flexibility and efficiency in multiple buildings by improving the share of self-consumed renewable electricity at a cluster level and ii) reducing the interaction with the power grid. The proposed cluster includes two buildings, a house and an office space, and an electric vehicle, and it can be considered as the basic nucleus of human linked energy users. The energy and economic performance of the proposed V2B2 scheme highly depends on weather conditions and purchasing/selling electricity price. Therefore, to assess the impact of weather and energy prices on the system energy and economic performance, a comprehensive parametric analysis is conducted by varying the main design and operating parameters of the capacity of the key components of the investigated energy cluster, such as of buildings integrating PV panels and electric storage devices. The modelled and simulated scenarios refer to two different layouts simulated in several European cities, selected to consider different weather conditions and national electricity market prices. To identify the optimal V2B2 configurations, several energy and economic indicators of each simulated scenario are compared to a conventional reference one in which the novel energy management scheme is not implemented. Through the proposed V2B2 scheme, encouraging energy savings, from a minimum of 13.6% to a maximum of 71.2%, and economic outcomes are achieved.

Country
Italy
Keywords

Building to vehicle to building (V2B; 2; ); Dynamic simulations; Electric vehicles; Energy and economic parametric analysis; Energy storage; Renewable energy exploitation, Energy storage, Electric vehicles, Renewable energy exploitation, 2, ), Building to vehicle to building (V2B, Energy and economic parametric analysis, Dynamic simulations

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%