Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design for energy flexibility in smart buildings through solar based and thermal storage systems: Modelling, simulation and control for the system optimization

Authors: Maturo Anthony; Buonomano Annamaria; Athienitis Andreas;

Design for energy flexibility in smart buildings through solar based and thermal storage systems: Modelling, simulation and control for the system optimization

Abstract

The present study investigates the use and implementation of energy efficient measures and strategies for building applications, toward the Nearly Zero Energy Buildings target. Specifically, objective of the study is to implement building integrated photovoltaic thermal devices coupled with a phase change materials heat exchanger acting as an active thermal storage building component, with the aim to add flexibility to the building while still maintaining indoor comfort conditions. To show the potentials of the novel configuration proposed in this paper, a multi-zone grey-box model is developed and validated to capture the thermal dynamics of a building, and a control strategy applied to the whole system is developed for energy management purpose. The whole simulation model, including thermophysical properties of the building-system and the control features, is implemented in a MATLAB environment. To assess the model and application potentials toward the optimal design and operation of the proposed system for energy efficiency and flexibility goals, a suitable case study analysis is conducted. Thus, a sensitivity analysis, using an evolutionary algorithm, is performed by considering economic and energy objective functions which focuses on the reduction of the building energy demand, load variability and economic aspects. In this regard, the optimal design configuration is underlined in a way that the operation of the components can be maximized to provide flexibility to the building: in average working conditions one single layer of PCM can provide around 186.3 Wh/K per unit of temperature and width. A rule-based management strategy is proposed to prove the possibility to shift and shave the energy peaks during high energy request periods, demand response events. Finally, by considering an approximate economic calculation, the simple payback, taking into account only the positive effects on the winter management, is around 13.5 years.

Country
Italy
Keywords

Integrated energy systems, Nearly zero energy buildings, Phase change materials, Grey-box modelling, Building integrated photovoltaic thermal systems, Energy flexibility, Building integrated photovoltaic thermal systems; Energy flexibility; Grey-box modelling; Integrated energy systems; Nearly zero energy buildings; Phase change materials

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%