
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An innovative four-objective dragonfly-inspired optimization algorithm for an efficient, green, and cost-effective waste heat recovery from SOFC

This work proposes a novel yet practical dragonfly optimization algorithm that addresses four competing objectives simultaneously. The proposed algorithm is applied to a hybrid system driven by the solid oxide fuel cell (SOFC) integrated with waste heat recovery units. A function-fitting neural network is developed to combine the thermodynamic model of the system with the dragonfly algorithm to mitigate the calculation time. According to the optimization outcomes, the optimum parameters create significantly more power and have a greater exergy efficiency and reduced product costs and CO2 emissions compared to the design condition. The sensitivity analysis reveals that while the turbine inlet temperatures of power cycles are ineffective, the fuel utilization factor and the current density significantly impact performance indicators. The scatter distribution indicates that the fuel cell temperature and steam-to-carbon ratio should be kept at their lowest bound. The Sankey graph shows that the fuel cell and afterburner are the main sources of irreversibility. According to the chord diagram, the SOFC unit with a cost rate of 13.2 $/h accounts for more than 29% of the overall cost. Finally, under ideal conditions, the flue gas condensation process produces an additional 94.22 kW of power and 760,056 L/day of drinkable water.
- Royal Institute of Technology Sweden
- Aalborg University Library (AUB) Aalborg Universitet Research Portal Denmark
- University of Tehran Iran (Islamic Republic of)
- Aalborg University Library (AUB) Denmark
- Aalborg University Denmark
Artificial neural network, Exergoeconomic, Multi-objective optimization, Solid oxide fuel cell, Dragonfly algorithm
Artificial neural network, Exergoeconomic, Multi-objective optimization, Solid oxide fuel cell, Dragonfly algorithm
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
