Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Building-integrated photovoltaics (BIPV): A mathematical approach to evaluate the electrical production of solar PV blinds

Authors: Nicoletti F.; Cucumo M. A.; Arcuri N.;

Building-integrated photovoltaics (BIPV): A mathematical approach to evaluate the electrical production of solar PV blinds

Abstract

Lower prices for photovoltaic systems lead to the spread of building-integrated photovoltaics (BIPV). In this paper, a simple method is proposed to evaluate the electrical power produced by Solar Photovoltaic Blinds (SPB). The equations allow to assess slat mutual shading and view factors and are applicable to any slat inclination, any orientation and any geometry. The possibility that the PV layer does not entirely cover the lamella is also considered. A parametric study is performed to evaluate the impact of geometric factors on the annual yield. The paper shows that 1) The south-east (or -west) orientation provides maximum electrical production. 2) Automating closing PV blinds in summer, when room is unoccupied, allows to increase electricity production by approximately 9% for the south, east and west exposures and 16% for the north exposure. 3) There is a slat distance/width ratio that maximizes the annual electricity produced. It depends on the handling strategy and is about 0.6 for energy optimizing methods and 0.7 for standard uses. 4) Solar tracking that maximizes the radiation entering the room in winter significantly reduces electricity production. 5) The reflectivity of the back of the slats has a little influence on the annual production (up to 5%).

Country
Italy
Related Organizations
Keywords

Building-integrated photovoltaic, Venetian blinds, Solar PV blinds, Slat mutual shading, Photovoltaic

Powered by OpenAIRE graph
Found an issue? Give us feedback