Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2023
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wind turbine output power prediction and optimization based on a novel adaptive neuro-fuzzy inference system with the moving window

Authors: Bilal, Boudy; Adjallah, Kondo Hloindo; Sava, Alexandre; Yetilmezsoy, Kaan; Ouassaid, Mohammed;

Wind turbine output power prediction and optimization based on a novel adaptive neuro-fuzzy inference system with the moving window

Abstract

This study focuses on predicting the output power of wind turbines (WTs) using wind speed and WT operational characteristics. The main contribution of this work is a model identification method based on an adaptive neuro-fuzzy inference system (ANFIS) through multi-source data fusion on a moving window (MoW). The proposed ANFIS-MoW-based approach was applied to data in different time series windows, namely the very short-term, short-term, medium-term, and long-term time horizons. Data collected from a 30-MW wind farm on the west coast of Nouakchott (Mauritania) were used in the computational analysis. Compared to nonparametric models from the literature and models employing artificial intelligence machine learning techniques, the proposed ANFIS-MoW model demonstrated superior predictions for the output power of the WT with the fusion of very little data collected from different WTs. Moreover, for various time series windows (TSW) and meteorological conditions, additional benchmarking demonstrated that the ANFIS-MoW-based method outperformed five existing ANFIS-based models, including grid partition (ANFIS-GP), subtractive clustering (ANFIS-SC), fuzzy c-means clustering (ANFIS-FCM), genetic algorithm (ANFIS-GA), and particle swarm optimization (ANFIS-PSO). The results indicated that the suggested methodology is a promising soft-computing tool for accurately estimating the WT output power for WTs' sustainability through better control of their operation.Wind turbine; Time series horizon; Adaptive neuro-fuzzy inference system; Movingwindow approach; Power prediction

Country
Turkey
Keywords

Adaptive neuro-fuzzy inference system, Time series horizon, Power prediction, Moving window approach, [INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation, Wind turbine, [SPI.NRJ] Engineering Sciences [physics]/Electric power, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%