Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Towards a real-time capable hybrid-twin for gas-bearing supported high-speed turbocompressors

Authors: L.E. Olmedo; J. Schiffmann;

Towards a real-time capable hybrid-twin for gas-bearing supported high-speed turbocompressors

Abstract

A hybrid-twin for gas-bearing supported, high-speed turbocompressor is suggested to be an aide to increase the operational reliability and to provide valuable insights to improve its design. The bearing clearances of a few micrometers imply that excessive thermal or mechanical deformations can result in machine failure due to mechanical seizure or rotor-dynamic instabilities. The high centrifugal forces and thermal gradients may induce material fracture or the lift-off of press-fitted assemblies. The mentioned phenomena and interactions depend strongly on the operating conditions and imply a risk of hitting critical operating zones potentially unscreened during the design phase. The developed twin asset involves 1D multi-domain models that are accurate enough to provide useful information regarding the most critical interactions and are computationally viable for real-time applications suggesting a run-to-real time ratio of 2 per cent. A case study in which a turbocompressor touchdown is analyzed a posteriori using the twin asset to highlight the possible insights to be gained by using the virtual twin to predict data that cannot be readily measured such as the thrust bearing axial clearance under the impeller thrust force. Finally, the generation of signals by the twin asset providing a degree of redundancy with sensor values is highlighted as an opportunity to increase confidence in monitoring tasks, paving the way to extension into control strategies.

Country
Switzerland
Keywords

hybrid-twin, real-time simulation, digital twin, 1d acausal networks, gas bearing, high-speed turbomachinery

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average