
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Towards a real-time capable hybrid-twin for gas-bearing supported high-speed turbocompressors

A hybrid-twin for gas-bearing supported, high-speed turbocompressor is suggested to be an aide to increase the operational reliability and to provide valuable insights to improve its design. The bearing clearances of a few micrometers imply that excessive thermal or mechanical deformations can result in machine failure due to mechanical seizure or rotor-dynamic instabilities. The high centrifugal forces and thermal gradients may induce material fracture or the lift-off of press-fitted assemblies. The mentioned phenomena and interactions depend strongly on the operating conditions and imply a risk of hitting critical operating zones potentially unscreened during the design phase. The developed twin asset involves 1D multi-domain models that are accurate enough to provide useful information regarding the most critical interactions and are computationally viable for real-time applications suggesting a run-to-real time ratio of 2 per cent. A case study in which a turbocompressor touchdown is analyzed a posteriori using the twin asset to highlight the possible insights to be gained by using the virtual twin to predict data that cannot be readily measured such as the thrust bearing axial clearance under the impeller thrust force. Finally, the generation of signals by the twin asset providing a degree of redundancy with sensor values is highlighted as an opportunity to increase confidence in monitoring tasks, paving the way to extension into control strategies.
- École Polytechnique Fédérale de Lausanne EPFL Switzerland
hybrid-twin, real-time simulation, digital twin, 1d acausal networks, gas bearing, high-speed turbomachinery
hybrid-twin, real-time simulation, digital twin, 1d acausal networks, gas bearing, high-speed turbomachinery
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
