
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A novel approach based on integration of convolutional neural networks and echo state network for daily electricity demand prediction

handle: 10115/24758
The authors thank the data providers, all the reviewers and the Editor for their thoughtful comments, suggestions and the review process. Partial support of this study is through the project PID2020-115454GB-C21 of the Spanish Ministry of Science and Innovation (MICINN). Predicting electricity demand data is considered an essential task in decisions taking, and establishing new infrastructure in the power generation network. To deliver a high-quality electricity demand prediction, this paper proposes a hybrid combination technique, based on a deep learning model of Convolutional Neural Networks and Echo State Networks, named as CESN. Daily electricity demand data from four sites (Roderick, Rocklea, Hemmant and Carpendale), located in Southeast Queensland, Australia, have been used to develop the proposed hybrid prediction model. The study also analyzes five other machine learning-based models (support vector regression, multilayer perceptron, extreme gradient boosting, deep neural network, and Light Gradient Boosting) to compare and evaluate the outcomes of the proposed deep learning approach. The results obtained in the experimental study showed that the proposed hybrid deep learning model is able to obtain the highest performance compared to other existing models developed for daily electricity demand data forecasting. Based on the statistical approaches utilized in this study, the proposed hybrid approach presents the highest prediction accuracy among the compared models. The obtained results showed that the proposed hybrid deep learning algorithm is an excellent and accurate electricity demand forecasting method, which outperformed the state of the art algorithms that are currently used in this problem.
- King Juan Carlos University Spain
- University of Southern Queensland Australia
- University of Southern Queensland Australia
- Southern Technical University Iraq
- University of Alcalá Spain
Artificial intelligence, Echo state networks, Sustainable energy, Hybrid algorithms, 006, Deep learning, Convolutional neural networks, Electricity demand forecasting
Artificial intelligence, Echo state networks, Sustainable energy, Hybrid algorithms, 006, Deep learning, Convolutional neural networks, Electricity demand forecasting
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).39 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
