Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Osuva (University of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy
Article . 2023
Data sources: VIRTA
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimized siting and sizing of distribution-network-connected battery energy storage system providing flexibility services for system operators

Authors: Parthasarathy, Chethan; Doroudchi, Elahe; Laaksonen; Hannu; Khajeh, Hosna;

Optimized siting and sizing of distribution-network-connected battery energy storage system providing flexibility services for system operators

Abstract

This paper develops a two-stage model to site and size a battery energy storage system in a distribution network. The purpose of the battery energy storage system is to provide local flexibility services for the distribution system operator and frequency containment reserve for normal operation (FCR-N) for the transmission system operator. In the first stage, the priority is to fulfil the flexibility needs of the distribution system operator by managing congestions or interruptions of supply in the local network. Thus, the first stage allocates the battery to ensure reliable electricity supply in the local distribution network. The minimum required size of the battery is also determined in the first stage. The second stage optimally sizes the battery energy storage system to boost the profit by providing frequency containment reserve for normal operation. The first and second stages both solve stochastic optimization problems to design the battery energy storage system. However, the first stage considers worst-case scenarios while the second stage utilizes the most probable scenarios derived from the historical data. To validate the proposed model, real-world data from the years 2021 and 2022 in Finland are employed. The battery placement is conducted for both the IEEE 33-bus system and a Finnish case study. The profitability of the model is compared across different cases for the Finnish case study. Finally, the paper assesses the impacts of cycle aging on the battery's total profit. ; © 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). ; fi=vertaisarvioitu|en=peerReviewed|

Countries
Finland, Finland
Keywords

690, ta222, fi=Sähkötekniikka|en=Electrical Engineering|

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
hybrid