
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Solar radiation forecasting with deep learning techniques integrating geostationary satellite images

handle: 11583/2972198
The prediction of solar radiation allows estimating photovoltaic systems’ power production in advance, guaranteeing a more reliable and stable energy supply. In this work, we present a novel approach for short-term solar radiation forecasting that leverages multi-channel images from the geostationary satellites of the Meteosat series, coupled with GHI values in clear-sky conditions. We propose two distinct deep learning models, a 3D-CNN and a ConvLSTM, to forecast solar radiation in terms of GHI values, up to 6-h ahead with a temporal granularity of 15 min, over a test study area, the city of Turin, Piedmont, Italy. The models have been validated with ground GHI measurements, and the results show that the ConvLSTM consistently outperforms the 3D-CNN for longer forecasting horizons, achieving a MAD of 27.18% and an nRMSE of 0.57 for 6-h ahead predictions. To motivate the use of satellite images, we compared the performance of our approach with a baseline Smart Persistence model and another benchmark model, which previously achieved state-of-the-art performance on the same data set by exploiting various kinds of meteorological inputs. The proposed models outperform the Smart Persistence for predictions farther than 15-min ahead, achieving a Forecast Skill of 0.56 for predictions 6-h ahead. Furthermore, the comparison shows that using raw satellite images overcomes the performance achievable by solely using meteorological variables, reducing the RMSD by more than 3% and the MAD by 1.37% for prediction horizons greater than 4-h ahead.
Solar radiation forecast; Photovoltaic system; Renewable energy; Satellite; Meteosat; Deep learning
Solar radiation forecast; Photovoltaic system; Renewable energy; Satellite; Meteosat; Deep learning
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
