
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Application of GA-BPNN on estimating the flow rate of a centrifugal pump

Pumps consume nearly 8% of global electricity as the essential equipment for liquid transportation. A practical method for improving centrifugal pump energy efficiency is accurately predicting and controlling the pump operation status. However, current estimation methods for sensorless flow rate prediction have a significant error at low flow rate conditions. This study adds valve opening as the estimation model input variable, including motor shaft power and speed, to form a back-propagation neural network (BPNN) on an asynchronous motor-driven multistage centrifugal pump. By optimizing the initial weights and thresholds of BPNN, a GA-BPNN model was proposed to improve the prediction accuracy by using a genetic algorithm (GA). The results indicate that, with the addition of the valve opening as an input variable, the accuracy of BPNN-VO and GA-BPNN prediction improves significantly more than BPNN-NVO. Furthermore, the GA-BPNN model produces a significantly lower mean square error (MSE) and root mean square error (RMSE) than the original BPNN model. According to the experimental comparison and analysis, the absolute error of GA-BPNN between predicted flow rate and measured flow rate is less than 0.3 m3/h, the average relative error is less than 2%, and the relative error of low flow rate is less than 5%. This GA-BPNN estimation model significantly improves the accuracy of flow rate prediction, especially at small flow rates, and extends the scope of centrifugal pumps’ monitoring and control technology without flow sensors.
- Aalborg University Denmark
- Zhejiang University of Science and Technology China (People's Republic of)
- Aalborg University Library (AUB) Denmark
- Aalborg University Library (AUB) Aalborg Universitet Research Portal Denmark
- Zhejiang University of Technology China (People's Republic of)
Genetic algorithm, Flow rate estimation, BPNN, Centrifugal pump, Flow sensorless estimation
Genetic algorithm, Flow rate estimation, BPNN, Centrifugal pump, Flow sensorless estimation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).42 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
