Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energetic Materials ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energetic Materials Frontiers
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energetic Materials Frontiers
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energetic Materials Frontiers
Article . 2021
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Outfield overpressure characteristics and flame behavior of fuel vapor explosion in tubes with one weakly covered end

Authors: Jianjun Liang; Yiqi Yang; Dong Wang; Peili Zhang; Shimao Wang;

Outfield overpressure characteristics and flame behavior of fuel vapor explosion in tubes with one weakly covered end

Abstract

An experiment system of tubes with one weakly covered end was established, and the outfield characteristics of fuel vapor explosions were studied through experiments. The results are as follows. After the rupture of the weakly covered end, three outfield overpressure peaks appeared due to the rupture of the weakly covered end (P1), the venting of the flame (P2), and external explosion (P3). The value of overpressure peaks showed a downward trend with an increase in distance, and the maximum overpressure was formed due to the external explosion. The value of overpressure peaks were related to the L/D ratio of the tube. With an increase in the L/D ratio, P1 and P3 in the near field showed an upward linear trend, while P2 and P3 in the far field showed a quadratic trend. In the case of the same L/D ratio, the maximum overpressure largely depended on the fuel volume fraction and external distance. The flame shape showed a changing process of jet flame - radial tension - mushroom cloud-shaped flame. The mushroom-shaped flame was formed mainly due to the Kelvin-Helmholtz instability and vortex effect, and the value of axial flame parameters were greater than those of radial ones. With an increase in the L/D ratio, the axial flame parameters showed an upward linear trend, the radial flame parameters showed a downward linear trend, and their ratio showed an upward linear trend.

Keywords

Weakly covered end, Explosion, Chemical technology, TP1-1185, Fuel vapor, Outfield, Tube

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold