Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Policy
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Trade-off in emissions of acid gas pollutants and of carbon dioxide in fossil fuel power plants with carbon capture

Authors: S. D. Peteves; Arnaud Mercier; Calin-Cristian Cormos; Evangelos Tzimas;

Trade-off in emissions of acid gas pollutants and of carbon dioxide in fossil fuel power plants with carbon capture

Abstract

This paper investigates the impact of capture of carbon dioxide (CO2) from fossil fuel power plants on the emissions of nitrogen oxides (NOX) and sulphur oxides (SOX), which are acid gas pollutants. This was done by estimating the emissions of these chemical compounds from natural gas combined cycle and pulverized coal plants, equipped with post-combustion carbon capture technology for the removal of CO2 from their flue gases, and comparing them with the emissions of similar plants without CO2 capture. The capture of CO2 is not likely to increase the emissions of acid gas pollutants from individual power plants; on the contrary, some NOX and SOX will also be removed during the capture of CO2. The large-scale implementation of carbon capture is however likely to increase the emission levels of NOX from the power sector due to the reduced efficiency of power plants equipped with capture technologies. Furthermore, SOX emissions from coal plants should be decreased to avoid significant losses of the chemicals that are used to capture CO2. The increase in the quantity of NOX emissions will be however low, estimated at 5% for the natural gas power plant park and 24% for the coal plants, while the emissions of SOX from coal fired plants will be reduced by as much as 99% when at least 80% of the CO2 generated will be captured.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 10%
Top 1%
Top 10%