Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Policy
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Emission scenarios in the face of fossil-fuel peaking

Authors: Brecha, Robert J.;

Emission scenarios in the face of fossil-fuel peaking

Abstract

Abstract Emissions scenarios used by the Intergovernmental Panel on Climate Change (IPCC) are based on detailed energy system models in which demographics, technology and economics are used to generate projections of future world energy consumption, and therefore, of greenhouse gas emissions. We propose in this paper that it is useful to look at a qualitative model of the energy system, backed by data from short- and medium-term trends, to gain a sense of carbon emission bounds. Here we look at what may be considered a lower bound for 21st century emissions given two assumptions: first, that extractable fossil-fuel resources follow the trends assumed by “peak oil” adherents, and second, that no climate mitigation policies are put in place to limit emissions. If resources, and more importantly, extraction rates, of fossil fuels are more limited than posited in full energy-system models, a supply-driven emissions scenario results; however, we show that even in this “peak fossil-fuel” limit, carbon emissions are high enough to surpass 550 ppm or 2 °C climate protection guardrails. Some indicators are presented that the scenario presented here should not be disregarded, and comparisons are made to the outputs of emission scenarios used for the IPCC reports.

Countries
United States, Germany, United States
Keywords

Engineering Physics, Environmental Indicators and Impact Assessment, Physics, Natural Resources Management and Policy, and Energy, Oil, Sustainability, Gas, Natural Resources and Conservation, Natural Resource Economics, Other Physics, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%