Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Policy
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Environmental impacts of the infrastructure for district heating in urban neighbourhoods

Authors: Joan Rieradevall; orcid Xavier Gabarrell;
Xavier Gabarrell
ORCID
Harvested from ORCID Public Data File

Xavier Gabarrell in OpenAIRE
orcid Jordi Oliver-Solà;
Jordi Oliver-Solà
ORCID
Harvested from ORCID Public Data File

Jordi Oliver-Solà in OpenAIRE

Environmental impacts of the infrastructure for district heating in urban neighbourhoods

Abstract

District heating is a technology for distributing centrally produced heat for space heating and sanitary hot-water generation for residential and commercial uses. The objectives are to identify which subsystems and components of a district heating grid are the main contributors to the overall impact of the infrastructure; and provide environmentally oriented design strategies for the future eco-redesign of these kinds of infrastructures. This paper performs a life-cycle assessment (LCA) to determine the environmental impacts of a district heating infrastructure in an urban neighbourhood context. The analysis covers seven subsystems (power plant, main grid, auxiliary components of the main grid, trench works, service pipes, buildings and dwellings) and twelve standard components. The results for the subsystems show that the sources of impact are not particularly located in the main grid (less than 7.1% contribution in all impact categories), which is the focus of attention in the literature, but in the power plants and dwelling components. These two subsystems together contribute from 40% to 92% to the overall impact depending on the impact categories. Concerning the components, only a reduced number are responsible for the majority of the environmental impact. This facilitates identifying effective strategies for the redesign of the infrastructure.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
bronze
Upload OA version
Are you the author? Do you have the OA version of this publication?