Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Policy
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy and environmental impacts of alternative pathways for the Portuguese road transportation sector

Authors: John B. Heywood; Carla Silva; Tiago L. Farias; Patrícia Baptista;

Energy and environmental impacts of alternative pathways for the Portuguese road transportation sector

Abstract

Abstract This study presents a methodology to develop scenarios of evolution from 2010 to 2050, for energy consumption and emissions (CO 2 , HC, CO, NO x , PM) of the road transportation sector (light-duty and heavy-duty vehicles). The methodology is applied to Portugal and results are analyzed in a life-cycle perspective. A BAU trend and 5 additional scenarios are explored: Policy-based (Portuguese political targets considered); Liquid fuels-based (dependency on liquid fuels and no deployment of alternative refueling infrastructure); Diversified (introduction of a wide diversity of alternative vehicle technology/energy sources); Electricity vision (deployment of a wide spread electricity recharging infrastructure); Hydrogen pathway (a broad hydrogen refueling infrastructure is deployed). Total life-cycle energy consumption could decrease between 2 and 66% in 2050 relatively to 2010, while CO 2 emissions will decrease between 7 and 73% in 2050 relatively to 2010. In 2050 the BAU scenario remains 30% above the 1990 level for energy consumption and CO 2 emissions; the other considered scenarios lead to 4 to 29% reductions for energy consumption and 10 to 33% for CO 2 emissions in 2050 compared to the BAU. Therefore, alternative vehicle technologies are required in the long-term, but changes in taxation and alternative transportation modes policies are crucial for achieving short-term impacts.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%