
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Macro-economic impact of large-scale deployment of biomass resources for energy and materials on a national level—A combined approach for the Netherlands

Biomass is considered one of the most important options in the transition to a sustainable energy system with reduced greenhouse gas (GHG) emissions and increased security of enegry supply. In order to facilitate this transition with targeted policies and implementation strategies, it is of vital importance to understand the economic benefits, uncertainties and risks of this transition. This article presents a quantification of the economic impacts on value added, employment shares and the trade balance as well as required biomass and avoided primary energy and greenhouse gases related to large scale biomass deployment on a country level (the Netherlands) for different future scenarios to 2030. This is done by using the macro-economic computable general equilibrium (CGE) model LEITAP, capable of quantifying direct and indirect effects of a bio-based economy combined with a spread sheet tool to address underlying technological details. Although the combined approach has limitations, the results of the projections show that substitution of fossil energy carriers by biomass, could have positive economic effects, as well as reducing GHG emissions and fossil energy requirement. Key factors to achieve these targets are enhanced technological development and the import of sustainable biomass resources to the Netherlands. (C) 2013 Elsevier Ltd. All rights reserved.
- Wageningen University & Research Netherlands
- Utrecht University Netherlands
emissions, costs, balance, bioenergy, Bio-based materials, biofuel mandates, Computable general-equilibriummodel, land-use, Bioenergy, ethanol, europe
emissions, costs, balance, bioenergy, Bio-based materials, biofuel mandates, Computable general-equilibriummodel, land-use, Bioenergy, ethanol, europe
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).32 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
