Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Policy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Engaging attribute tradeoffs in clean energy portfolio development

Authors: Douglas L. Bessette; Joseph Arvai;

Engaging attribute tradeoffs in clean energy portfolio development

Abstract

Abstract Governments and privately-held utilities will have to drastically reduce their carbon emissions to mitigate climate change. Such reductions will require transitioning electrical infrastructure to rely on cleaner fuels and power-generation technologies. Despite the myriad factors influencing both the process and eventual outcome of these transitions, it is typically transitions' cost and individuals’ willingness to pay (WTP) for them that dominate both strategic planning and political discourse. Studies used to calculate the public's WTP however often rely on vague policy options, ignore important social and environmental attributes, and fail to provide individuals means for engaging tradeoffs. Here we report on three studies that provided individuals multiple choice tasks for evaluating real-world portfolio options across key social and environmental attributes. Our results show that individuals placed high importance on minimizing costs, yet also consistently ranked strategies highest that reduced both greenhouse gas (GHG) and air particulate emissions, even when those portfolios require considerable cost increases. When provided an opportunity to construct their own portfolios, participants again constructed costly portfolios that significantly reduced both GHG emissions and air pollution. Using multiple choice tasks, we demonstrated individuals’ WTP for low-emission energy strategies to be higher than previous studies relying on contingent valuation suggest.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%