

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An integrated assessment of pathways for low-carbon development in Africa

In this paper we investigate the prospects for the large-scale use of low-emission energy technologies in Africa. Many African countries have recently experienced substantial economic growth and aim at fulfilling much of the energy needs associated with continuing along paths of economic expansion by exploiting their large domestic potentials of renewable forms of energy. Important benefits of the abundant renewable energy resources in Africa are that they allow for stimulating economic development, increasing energy access and alleviating poverty, while simultaneously avoiding emissions of greenhouse gases. In this study we analyse what the likely energy demand in Africa could be until 2050, and inspect multiple scenarios for the concomitant levels of greenhouse gas emissions and emission intensities. We use the TIAM-ECN model for our study, which enawbbles detailed energy systems research through a technology-rich cost-minimisation procedure. The results from our analysis fully support an Africa-led effort to substantially enhance the use of the continent's renewable energy potential. But they suggest that the current aim of achieving 300 GW of additional renewable electricity generation capacity by 2030 is perhaps unrealistic, even given high GDP and population growth: we find figures that are close to half this level. On the other hand, we find evidence for leap-frogging opportunities, by which renewable energy options rather than fossil fuels could constitute the cost-optimal solution to fulfil most of Africa's growing energy requirements. An important benefit of leap-frogging is that it avoids an ultimately expensive fossil fuels lock-in that would fix the carbon footprint of the continent until at least the middle of the century.
- Paul Scherrer Institute Switzerland
- Johns Hopkins University United States
- Johns Hopkins University School of Advanced International Studies United States
- Energy Research Centre of the Netherlands Netherlands
- McKinsey & Company United States
Renewable energy, Energy, 330, Energy Efficiency, Energy / Geological Survey Netherlands, SDG 8 - Decent Work and Economic Growth, GHG emissions, Climate change mitigation, Africa, SDG 13 - Climate Action, SDG 7 - Affordable and Clean Energy, Economic growth
Renewable energy, Energy, 330, Energy Efficiency, Energy / Geological Survey Netherlands, SDG 8 - Decent Work and Economic Growth, GHG emissions, Climate change mitigation, Africa, SDG 13 - Climate Action, SDG 7 - Affordable and Clean Energy, Economic growth
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).77 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1% visibility views 2 download downloads 12 - 2views12downloads
Data source Views Downloads ZENODO 2 12


