Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Policyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Policy
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Policy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Energy Policy
Article . 2020 . Peer-reviewed
http://dx.doi.org/10.1016/j.en...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Macroeconomic modelling under energy constraints: Global low carbon transition scenarios

Authors: Nieto Vega, Jaime; Carpintero Redondo, Óscar; Miguel González, Luis Javier; Blas Sanz, Ignacio de;

Macroeconomic modelling under energy constraints: Global low carbon transition scenarios

Abstract

Producción Científica Integrated Assessment Models provide a framework to study sustainability transitions and their economic impacts. Models seldom consider energy constraints, taking supply availability for granted and thus suggesting a mere change in the energy mix from non-renewables to renewables. In order to address these limitations, a macro-economic module within a broader system dynamics model (MEDEAS) has been developed. The model has been run for the whole world from 1995 to 2050 under three different scenarios: Business as Usual (BAU), considering no further transition policies and keeping current trends; Green Growth (GG), undertaking the low-carbon transition according to the Paris Agreement set of policies and with high GDP growth standards; and Post-Growth (PG), testing the sustainability transition under a GDP non-growth/degrowth approach. The results reveal the conflict between economic growth, climate policy and the sustainability of resources. Whereas a BAU approach would not even be an option to achieve climate goals, a GG view would not only face the downsizing of economic output, but neither would it be able to achieve the 2 °C objective. The success of the PG approach in meeting emissions objectives suggests a redirection from economic growth policies to an industrial policy that incorporates efficiency and redistribution. European project H2020-LCE-2015-2 (691287) Ministerio de Economía, Industria y Competitividad (Project ECO2017-85110-R)

Country
Spain
Keywords

Política climática, Climate policy, 5312.05 Energía, Política energética, Energy policy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 1%
Top 10%
Top 1%
Green
hybrid