Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Policy
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Policy
Article
License: CC BY
Data sources: UnpayWall
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Can spending to upgrade electricity networks to support electric vehicles (EVs) roll-outs unlock value in the wider economy?

Authors: Alabi, Oluwafisayo; Turner, Karen; Figus, Gioele; Katris, Antonios; Calvillo, Christian;

Can spending to upgrade electricity networks to support electric vehicles (EVs) roll-outs unlock value in the wider economy?

Abstract

We investigate the question of whether spending to enable ambitious EV roll-out programmes can in fact generate net gains across the wider economy. We use a multi-sector computable general equilibrium (CGE) model for the UK economy and focus on the need to upgrade electricity networks to support an initial EV penetration scenario for the period to 2030. We find that large scale spending and cost recovery for network upgrades is likely to result in net negative impacts on key macroeconomic indicators, including real income available for spending across all UK households. This is due to a combination of time-limited network upgrade activity in the presence of capacity constraints combined with the need for costs to be passed on to electricity consumers through higher bills. But the lowest income households – the group of greatest concern to policymakers – suffer the smallest losses. Moreover, the EV uptake delivers sufficient gains t that deliver net positive impacts on all household incomes, with sustained expansion in GDP and employment across the economy. The key driver is a greater reliance on UK supply chains with the shift away from more import-intensive petrol and diesel fuelled vehicles towards electric ones.

Country
United Kingdom
Related Organizations
Keywords

Electrical engineering. Electronics Nuclear engineering, 330, TK, 338

Powered by OpenAIRE graph
Found an issue? Give us feedback