
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The relative importance of diet-related and waterborne effects of copper for a leaf-shredding invertebrate

pmid: 26000755
Copper (Cu) exposure can increase leaf-associated fungal biomass, an important food component for leaf-shredding macroinvertebrates. To test if this positive nutritional effect supports the physiological fitness of these animals and to assess its importance compared to waterborne toxicity, we performed a 24-day-bioassay in combination with a 2×2 factorial design using the amphipod shredder Gammarus fossarum and a field-relevant Cu concentration of 25 μg/L (n = 65). Waterborne toxicity was negligible, while gammarids fed leaves exposed to Cu during microbial colonization exhibited a near-significant impairment in growth (∼30%) and a significantly reduced lipid content (∼20%). These effects appear to be governed by dietary uptake of Cu, which accumulated in leaves as well as gammarids and likely overrode the positive nutritional effect of the increased fungal biomass. Our results suggest that for adsorptive freshwater contaminants dietary uptake should be evaluated already during the registration process to safeguard the integrity of detritus-based ecosystems.
Food Chain, Fungi, Fresh Water, Feeding Behavior, Risk Assessment, Plant Leaves, Animals, Amphipoda, Biomass, Copper, Water Pollutants, Chemical, Environmental Monitoring
Food Chain, Fungi, Fresh Water, Feeding Behavior, Risk Assessment, Plant Leaves, Animals, Amphipoda, Biomass, Copper, Water Pollutants, Chemical, Environmental Monitoring
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).25 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
