Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Pollution
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessment of vehicle emission programs in China during 1998–2013: Achievement, challenges and implications

Authors: Xiaomeng Wu; Ye Wu; Shaojun Zhang; Huan Liu; Lixin Fu; Jiming Hao;

Assessment of vehicle emission programs in China during 1998–2013: Achievement, challenges and implications

Abstract

China has been embracing rapid motorization since the 1990s, and vehicles have become one of the major sources of air pollution problems. Since the late 1990s, thanks to the international experience, China has adopted comprehensive control measures to mitigate vehicle emissions. This study employs a local emission model (EMBEV) to assess China's first fifteen-year (1998-2013) efforts in controlling vehicles emissions. Our results show that China's total annual vehicle emissions in 2013 were 4.16 million tons (Mt) of HC, 27.4 Mt of CO, 7.72 Mt of NOX, and 0.37 Mt of PM2.5, respectively. Although vehicle emissions are substantially reduced relative to the without control scenarios, we still observe significantly higher emission density in East China than in developed countries with longer histories of vehicle emission control. This study further informs China's policy-makers of the prominent challenges to control vehicle emissions in the future. First, unlike other major air pollutants, total NOX emissions have rapidly increased due to a surge of diesel trucks and the postponed China IV standard nationwide. Simultaneous implementation of fuel quality improvements and vehicle-engine emission standards will be of great importance to alleviate NOX emissions for diesel fleets. Second, the enforcement of increasingly stringent standards should include strict oversight of type-approval conformity, in-use complacence and durability, which would help reduce gross emitters of PM2.5 that are considerable among in-use diesel fleets at the present. Third, this study reveals higher HC emissions than previous results and indicates evaporative emissions may have been underestimated. Considering that China's overall vehicle ownership is far from saturation, persistent efforts are required through economic tools, traffic management and emissions regulations to lower vehicle-use intensity and limit both exhaust and evaporative emissions. Furthermore, in light of the complex technology for emerging new energy vehicles, their real-world emissions need to be adequately evaluated before massive promotion.

Related Organizations
Keywords

Air Pollutants, China, History, 20th Century, Models, Theoretical, Achievement, History, 21st Century, Environmental Policy, Motor Vehicles, Air Pollution, Forecasting, Vehicle Emissions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    172
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
172
Top 1%
Top 10%
Top 1%