
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Employing CO2 as reaction medium for in-situ suppression of the formation of benzene derivatives and polycyclic aromatic hydrocarbons during pyrolysis of simulated municipal solid waste

pmid: 28256357
This study proposes a strategic principle to enhance the thermal efficiency of pyrolysis of municipal solid waste (MSW). An environmentally sound energy recovery platform was established by suppressing the formation of harmful organic compounds evolved from pyrolysis of MSW. Using CO2 as reaction medium/feedstock, CO generation was enhanced through the following: 1) expediting the thermal cracking of volatile organic carbons (VOCs) evolved from the thermal degradation of the MSWs and 2) directly reacting VOCs with CO2. This particular influence of CO2 on pyrolysis of the MSWs also led to the in-situ mitigation of harmful organic compounds (e.g., benzene derivatives and polycyclic aromatic hydrocarbons (PAHs)) considering that CO2 acted as a carbon scavenger to block reaction pathways toward benzenes and PAHs in pyrolysis. To understand the fundamental influence of CO2, simulated MSWs (i.e., various ratios of biomass to polymer) were used to avoid any complexities arising from the heterogeneous matrix of MSW. All experimental findings in this study suggested the foreseeable environmental application of CO2 to energy recovery from MSW together with disposal of MSW.
- Education University of Hong Kong China (People's Republic of)
- Sejong University Korea (Republic of)
- University of Hong Kong China (People's Republic of)
- University of Hong Kong China (People's Republic of)
- Sejong University Korea (Republic of)
Hot Temperature, Incineration, Carbon Dioxide, Models, Theoretical, Solid Waste, Air Pollution, Benzene Derivatives, Biomass, Polycyclic Aromatic Hydrocarbons
Hot Temperature, Incineration, Carbon Dioxide, Models, Theoretical, Solid Waste, Air Pollution, Benzene Derivatives, Biomass, Polycyclic Aromatic Hydrocarbons
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).43 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
