
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effects of ZnO nanoparticles on the performance of anaerobic membrane bioreactor: An attention to the characteristics of supernatant, effluent and biomass community

pmid: 30851584
Two laboratory-scale anaerobic membrane bioreactor (AnMBRs) were built to investigate the effect of zinc oxide nanoparticles (ZnO-NPs) on their performance, and the recovery phase was also examined. Results showed that the addition of ZnO-NPs with 0.4 mg/L caused significant deteriorations of AnMBR performance, including decrements of chemical oxygen demand (COD) removal efficiency from 96.4% to 81.5% and biogas production from 0.36 to 0 L/g COD removal within 40 days. A significant increment from 13.2 to 52.1 mg/L in soluble microbial products (SMP) was obtained, while no obvious effect on colloids was observed except an increased fluctuation of colloid concentration. Additionally, gas chromatography-mass spectrometry (GC-MS) analysis revealed remarkable changes of compounds in effluent with exposure to ZnO-NPs, and some new alkanes and esters were produced, such as Cyclobutane, 1,2-diethyl-, trans-, Tetradecane, Cyclopropane, octyl-, and Butanoic acid, methyl ester. The microbial community was compared using high-throughput sequencing, clearly showing the changes in both bacteria and archaea communities. Furthermore, results for recovery phase indicated that the AnMBR performance can be recovered within around 60 days after stopping ZnO-NPs addition, accompanied by the decrement of zinc concentration mainly adsorbed by sludge.
- Middlesex University United Kingdom
- University of London United Kingdom
- Hohai University China (People's Republic of)
- RMIT University Australia
- Hohai University China (People's Republic of)
Biological Oxygen Demand Analysis, Sewage, Microbiota, Membranes, Artificial, Water Purification, Bacteria, Anaerobic, Bioreactors, Biofuels, Nanoparticles, Anaerobiosis, Biomass, Zinc Oxide, Water Pollutants, Chemical
Biological Oxygen Demand Analysis, Sewage, Microbiota, Membranes, Artificial, Water Purification, Bacteria, Anaerobic, Bioreactors, Biofuels, Nanoparticles, Anaerobiosis, Biomass, Zinc Oxide, Water Pollutants, Chemical
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
