Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Pollution
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Emission factors of oxygenated polycyclic aromatic hydrocarbons from ships in China

Authors: Xuyang Liang; Lizhi Wang; Wei Du; Yuanchen Chen; Xiao Yun; Yilin Chen; Guofeng Shen; +3 Authors

Emission factors of oxygenated polycyclic aromatic hydrocarbons from ships in China

Abstract

The rapid growth of maritime traffic, transportation, and fishery activities has increased shipping emissions and degraded the air quality in coastal areas. As a result, controlling ocean-based pollution sources have become increasingly important. This study investigated the real-world emission characteristics of oxygenated polycyclic aromatic hydrocarbons (OPAHs, a group of highly toxic semi-volatile organic compounds) from five types of offshore ships using diesel oil: small and medium fishing ships, tug boats, ferry, and engineering ships, under various driving mode. Both gaseous and particle emission factors (EF) of four specific OPAHs were determined in our study. Among the OPAHs species emitted from ships, 9-fluorenone (9FO; 72%) and anthrathrace-9,10-quinone (ATQ; 25%) were the most abundant. The arithmetic mean of the sum of gaseous OPAHs EFs for all ships in this study was 2.5 ± 4.4 mg/kg fuel burned, and the mean particulate OPAHs EF was 4.7 ± 7.9 mg/kg. Small fishing ships had the highest total OPAHs EFs (31.0 ± 17.0 mg/kg). Apart from small fishing ships, there was no significant difference in the total EF of OPAHs for the other four types of ships. The emissions of the four OPAHs are predominantly in the particulate phase. There were no significant differences in the emissions of the four OPAHs under different driving mode. According to estimates, the annual OPAH emissions from the four types of ships in Hainan in 2017 were approximately 4.2 (range: 2.7-7.0) tons, dwarfing the OPAH emissions from diesel-powered on-road vehicles in China (23.5 kg).

Related Organizations
Keywords

Air Pollutants, China, Coal, Dust, Gases, Polycyclic Aromatic Hydrocarbons, Ships, Vehicle Emissions, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average