Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Earth and Planetary Science Letters
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Contrasting response of sea-level change to orbital eccentricity in greenhouse and icehouse climates

Authors: orcid Jiří Laurin;
Jiří Laurin
ORCID
Harvested from ORCID Public Data File

Jiří Laurin in OpenAIRE
David Uličný; orcid bw Dave Waltham;
Dave Waltham
ORCID
Derived by OpenAIRE algorithms or harvested from 3rd party repositories

Dave Waltham in OpenAIRE
Petr Toman; Michael Warsitzka; orcid Bradley B. Sageman;
Bradley B. Sageman
ORCID
Harvested from ORCID Public Data File

Bradley B. Sageman in OpenAIRE

Contrasting response of sea-level change to orbital eccentricity in greenhouse and icehouse climates

Abstract

Climate-controlled changes in eustatic sea level (ESL) are linked to transfers of water between ocean and land, thus offering a rare insight into the past hydrological cycle. In this study, we examine the timing and phase of Milankovitch-scale ESL cycles in the peak Cretaceous greenhouse, the early Turonian (-93-94 million years, Myr, ago). A high-resolution astronomical framework established for the Bohemian Cretaceous Basin (central Europe) suggests a -400-kyr pace and a distinct asymmetry of interpreted ESL cycles. The rising limbs of ESL change constitute only 20-30 % of the cycle, and are encased entirely within the falling phase of the 405-kyr eccentricity. The intervening ESL falls (<= 6 m in magnitude) are more protracted, starting within 70 kyr prior to the eccentricity minima and culminating -60 kyr after the 405-kyr eccentricity maxima. Despite similarities to the sawtooth shape of -100-kyr glacioeustatic oscillations of the Late Pleistocene, the time scales and phasing are unparalleled in the Pleistocene icehouse. A similar, 405-kyr pace is found in ice-volume variations of the early Miocene, but the timing of glacioeustatic change relative to eccentricity forcing is incompatible with the phase of greenhouse sea-level oscillations. The phasing points to major differences in the geographic location and insolation sensitivity of the key hydrological reservoirs under icehouse and greenhouse regimes. The inferred structure of greenhouse eustasy points to low- or middle-latitude water storage, likely aquifers, that charge (expand) with rising seasonality variations and discharge (contract) with declining seasonality amplitudes on the 405-kyr scale. The net volume of water transferred on these time scales is within 2.2 x 106 km3, equivalent to <= 10 % of the present-day storage in the uppermost 2 km of continental crust. Potential additive interference with steric eustasy, proportionally relevant during greenhouse regimes, could reduce the volumes required for continental storage.

Country
Czech Republic
Keywords

climate change, eustasy, continental water storage, Milankovitch cycles, Turonian, Cretaceous

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Related to Research communities
Energy Research
Upload OA version
Are you the author? Do you have the OA version of this publication?