Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electric Power Syste...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electric Power Systems Research
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hybrid model using three-stage algorithm for simultaneous load and price forecasting

Authors: Ashkan Eslami Fard; Miadreza Shafie-khah; Alireza Heidari; Mehrdad Setayesh Nazar; Joao P. S. Catalao; Joao P. S. Catalao; Joao P. S. Catalao;

Hybrid model using three-stage algorithm for simultaneous load and price forecasting

Abstract

Abstract Short-term load and price forecasting is an important issue in the optimal operation of restructured electric utilities. This paper presents a new intelligent hybrid three-stage model for simultaneous load and price forecasting. The proposed algorithm uses wavelet and Kalman machines for the first stage load and price forecasting. Each of the load and price data is decomposed into different frequency components, and Kalman machine is used to forecast each frequency components of load and price data. Then a Kohonen Self Organizing Map (SOM) finds similar days of load frequency components and feeds them into the second stage forecasting machine. In addition, mutual information based feature selection is used to find the relevant price data and rank them based on their relevance. The second stage uses Multi-Layer Perceptron Artificial Neural Network (MLP-ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) for forecasting of load and price frequency components, respectively. The third stage machine uses the second stage outputs and feeds them into its MLP-ANN and ANFIS machines to improve the load and price forecasting accuracy. The proposed three-stage algorithm is applied to Nordpool and mainland Spain power markets. The obtained results are compared with the recent load and price forecast algorithms, and showed that the three-stage algorithm presents a better performance for day-ahead electricity market load and price forecasting.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%