
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A communication-free reactive-power control strategy in VSC-HVDC multi-terminal systems to improve transient stability

handle: 11531/43590 , 11531/23040
This paper proposes a new reactive-power control strategy for High Voltage Direct Current multi-terminal systems with Voltage Source Converter stations (VSC-HVDC) to improve transient stability in electric power transmission systems. The proposed algorithm uses local measurements to estimate, in each converter station, a weighted average of the frequencies seen by the VSC stations of the HVDC multi-terminal system. This estimation is carried out making use of a (small) auxiliary local active-power modulation along with the DC-side voltage droop control in the VSC stations, where the latter also uses local measurements only. The estimated frequency is used as the set point for supplementary reactive-power control at each converter station. The proposed control law has been simulated in a test system using PSS/E and the results show that it improves transient stability, significantly, producing similar results to those obtained controlling reactive power using global measurements. info:eu-repo/semantics/draft
621, Instituto de Investigación Tecnológica (IIT)
621, Instituto de Investigación Tecnológica (IIT)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
