
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
GridLearn: Multiagent reinforcement learning for grid-aware building energy management

GridLearn: Multiagent reinforcement learning for grid-aware building energy management
Increasing amounts of distributed generation in distribution networks can provide both challenges and opportunities for voltage regulation across the network. Intelligent control of smart inverters and other smart building energy management systems can be leveraged to alleviate these issues. GridLearn is a multiagent reinforcement learning platform that incorporates both building energy models and power flow models to achieve grid level goals, by controlling behind-the-meter resources. This study demonstrates how multi-agent reinforcement learning can preserve building owner privacy and comfort while pursuing grid-level objectives. Building upon the CityLearn framework which considers RL for building-level goals, this work expands the framework to a network setting where grid-level goals are additionally considered. As a case study, we consider voltage regulation on the IEEE-33 bus network using controllable building loads, energy storage, and smart inverters. The results show that the RL agents nominally reduce instances of undervoltages and reduce instances of overvoltages by 34%.
- The University of Texas at Austin United States
- Colorado State University United States
- University of Colorado Boulder United States
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computer Science - Multiagent Systems, Multiagent Systems (cs.MA)
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computer Science - Multiagent Systems, Multiagent Systems (cs.MA)
1 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
