
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimizing parameters of the DC power flow

Many power system operation and planning problems use the DC power flow approximation to address computational challenges from the nonlinearity of the AC power flow equations. The DC power flow simplifies the AC power flow equations to a linear form that relates active power flows to phase angle differences across branches, parameterized by coefficients based on the branches' susceptances. Inspired by techniques for training machine learning models, this paper proposes an algorithm that seeks optimal coefficient and bias parameters to improve the DC power flow approximation's accuracy. Specifically, the proposed algorithm selects the coefficient and bias parameter values that minimize the discrepancy, across a specified set of operational scenarios, between the power flows given by the DC approximation and the power flows from the AC equations. Gradient-based optimization methods like Broyden-Fletcher-Goldfarb-Shanno (BFGS), Limited-Memory BFGS (L-BFGS), and Truncated Newton Conjugate-Gradient (TNC) enable solution of the proposed algorithm for large systems. After an off-line training phase, the optimized parameters are used to improve the accuracy of the DC power flow during on-line computations. Numerical results show several orders of magnitude improvements in accuracy relative to a hot-start DC power flow approximation across a range of test cases.
- Georgia Institute of Technology United States
- Georgia Institute of Technology United States
FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control
FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
