Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy for Sustainab...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy for Sustainable Development
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
UNC Dataverse
Article . 2014
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Life cycle assessment and feasibility study of small wind power in Thailand

Authors: Shabbir H. Gheewala; Shabbir H. Gheewala; Richard M. Kamens; Richard M. Kamens; Mark L. Drosnes; Mark L. Drosnes; Adam H. Carr; +5 Authors

Life cycle assessment and feasibility study of small wind power in Thailand

Abstract

The Thai government’s implementation of its 10 year renewable energy plan was done to help increase energy independence and reduce emissions resulting from energy production. Due to Thailand’s wind regime, wind turbines which can operate in low wind speeds will be needed to meet this goal. Small wind turbines typically operate at higher efficiency in lower winds, and thus they might prove to be a good option for wind power production in Thailand. Incorporating small wind turbines into power production can be difficult because of the perception of high investment costs and because their net benefit has not been adequately studied. Using a functional unit of producing 50 kWh per month for 10 years we conducted a Life Cycle Assessment comparing the global warming potential (GWP), embodied energy (EE), and levelized cost of electricity (LCOE) of four small wind turbines (≤20 kW), a diesel generator, and the Thai Grid. When analyzing GWP of the turbines it was found that they had a lower overall GWP than the diesel generator when in areas with reasonable wind resources. The same is true for embodied energy. Interestingly, in most available wind speed categories in Thailand the LCOE for wind turbines was lower than for the diesel generator. However, neither could compare to the LCOE of the Thai Grid, except in the areas with the highest average wind speeds (7.0 -­‐9.4 m/s). With this in mind, it is clear that the most important factor when considering wind power generation is the wind regime available in an area. Because of the increased cost relative to the Thai grid, implementation of wind turbines in Thailand was not found to be economically viable. This could be changed given lower costs for turbines and/or government incentives.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
bronze