Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Strategy Revi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Strategy Reviews
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Strategy Reviews
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A review on microgrid optimization with meta-heuristic techniques: Scopes, trends and recommendation

Authors: Afifa Akter; Ehsanul Islam Zafir; Nazia Hasan Dana; Rahul Joysoyal; Subrata K. Sarker; Li Li; S M Muyeen; +2 Authors

A review on microgrid optimization with meta-heuristic techniques: Scopes, trends and recommendation

Abstract

Microgrids (MGs) use renewable sources to meet the growing demand for energy with increasing consumer needs and technological advancement. They operate independently as small-scale energy networks using distributed energy resources. However, the intermittent nature of renewable energy sources and poor power quality are essential operational problems that must be mitigated to improve the MG’s performance. To address these challenges, researchers have introduced heuristic optimization mechanisms for MGs. However, local minima and the inability to find a global minimum in heuristic methods create errors in non-linear and nonconvex optimization, posing challenges in dealing with several operational aspects of MG such as energy management optimization, cost-effective dispatch, dependability, storage sizing, cyber-attack minimization, and grid integration. These challenges affect MG’s performance by adding complexity to the management of storage capacity, cost minimization, reliability assurance, and balance of renewable sources, which accelerates the need for meta-heuristic optimization algorithms (MHOAs). This paper presents a state-of-the-art review of MHOAs and their role in improving the operational performance of MGs. Firstly, the fundamentals of MG optimization are discussed to explore the scopes, requisites, and opportunities of MHOAs in MG networks. Secondly, several MHOAs in the MG domain are described, and their recent trends in MG’s techno-economic analysis, load forecasting, resiliency improvement, control operation, fault diagnosis, and energy management are summarized. The summary reveals that nearly 25% of the research in these areas utilizes the particle swarm optimization method, while the genetic and grey wolf algorithms are utilized by nearly 10% and 5% of the works studied in this paper, respectively, for optimizing the MG’s performance. This result summarizes that MHOA presents a system-agnostic optimization approach, offering a new avenue for enhancing the effectiveness of future MGs. Finally, we highlight some challenges that emerge during the integration of MHOAs into MGs, potentially motivating researchers to conduct further studies in this area.

Keywords

Optimization, Meta-heuristic techniques, Microgrid, Security algorithm, Energy industries. Energy policy. Fuel trade, Machine learning, HD9502-9502.5, Control and management

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Average
Top 10%
Top 1%
gold