
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Empirical equation to estimate viscosity of paraffin

handle: 10459.1/59421
Empirical equation to estimate viscosity of paraffin
Thermal energy storage (TES) systems using phase change materials (PCM) are nowadays widely developed to be applied in solar power plants or cooling and domestic comfort services. The design of a TES system does not only rely on the energy density that a PCM can provide, but also on other important material properties such as its rheological behavior when the PCM is melted. Viscosity varies with temperature, but the lack of an empirical equation predicting its value has lead researchers to simulate the system performance taking constant viscosity values which, consequently, have led to errors on the designs. As paraffin are one of the most common PCM types used, the present paper evaluates the rheology of four commercial paraffin with different phase change temperatures in order to find out an empirical equation for the whole paraffin family. A polynomial 3 model type equation has been found as the best one to predict paraffin viscosity. The work is partially funded by the Spanish government (ENE2015-64117-C5-1-R (MINECO/FEDER) and ENE2015-64117-C5-2-R (MINECO/FEDER)). The authors would like to thank the Catalan Government for the quality accreditation given to their research groups GREA (2014 SGR 123) and research group DIOPMA (2014 SGR 1543). The research leading to these results has received funding from RTC-2015-3583-5 (INPHASE) del Ministerio de Economía y Competitividad, dentro del Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013–2016, y ha sido cofinanciado con FONDOS FEDER, con el objetivo de promover el desarrollo tecnológico, la innovación y una investigación de calidad, and from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° PIRSES-GA-2013-610692 (INNOSTORAGE) and from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 657466 (INPATH-TES). Dr. Camila Barreneche would like to thank Ministerio de Economia y Competitividad de España for Grant Juan de la Cierva, FJCI-2014-22886.
- University of Lleida Spain
- University of Lleida Spain
- Canadian Real Estate Association Canada
- University of Barcelona Spain
- Fraunhofer Society Germany
Viscosity, Paraffin, Thermal energy storage (TES), Rheology, Empirical equation
Viscosity, Paraffin, Thermal energy storage (TES), Rheology, Empirical equation
15 Research products, page 1 of 2
- 2017IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
