
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Pseudo-two-dimensional model and impedance diagnosis of micro internal short circuit in lithium-ion cells

Abstract The early detection of micro internal short circuit (ISCr) cells can provide sufficient response time for preventing accidents such as spontaneous thermal runaway in battery packs of electric vehicles, and greatly improve safety. Because the existing models describing ISCr are mainly equivalent circuit models and three-dimensional physics-based models, we build a pseudo-two-dimensional model of micro ISCr cells to make up for the gaps. Using the calculation results of this model, we reveal the phenomenon of electric quantity depletion and the variation of internal electrochemical parameters when a micro ISCr occurs in the cell. We find the effective electrical conductivity of the separator is a crucial parameter describing the ISCr severity and determine reasonable values for this effective conductivity for fault diagnosis and battery design. Moreover, we propose an impedance-identification method that can be used for ISCr diagnostics. Through the simulation and experimental results, we find that the impedance of micro ISCr cells is different from that of normal cells and shows a certain regularity with the increase of ISCr severity.
- Tongji University China (People's Republic of)
- University of Colorado Colorado Springs United States
- University of Shanghai for Science and Technology China (People's Republic of)
- University of Shanghai for Science and Technology China (People's Republic of)
- University of Colorado Colorado Springs United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).131 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
