Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy St...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Energy Storage
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pseudo-two-dimensional model and impedance diagnosis of micro internal short circuit in lithium-ion cells

Authors: Tongzheng Zhao; Xiangdong Kong; Dongdong Qiao; Zhendong Zhang; M. Scott Trimboli; Gregory L. Plett; Yuejiu Zheng;

Pseudo-two-dimensional model and impedance diagnosis of micro internal short circuit in lithium-ion cells

Abstract

Abstract The early detection of micro internal short circuit (ISCr) cells can provide sufficient response time for preventing accidents such as spontaneous thermal runaway in battery packs of electric vehicles, and greatly improve safety. Because the existing models describing ISCr are mainly equivalent circuit models and three-dimensional physics-based models, we build a pseudo-two-dimensional model of micro ISCr cells to make up for the gaps. Using the calculation results of this model, we reveal the phenomenon of electric quantity depletion and the variation of internal electrochemical parameters when a micro ISCr occurs in the cell. We find the effective electrical conductivity of the separator is a crucial parameter describing the ISCr severity and determine reasonable values for this effective conductivity for fault diagnosis and battery design. Moreover, we propose an impedance-identification method that can be used for ISCr diagnostics. Through the simulation and experimental results, we find that the impedance of micro ISCr cells is different from that of normal cells and shows a certain regularity with the increase of ISCr severity.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    131
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
131
Top 1%
Top 10%
Top 1%