Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy St...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Energy Storage
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Journal of Energy Storage
Article . 2020 . Peer-reviewed
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phase change material/heat pipe and Copper foam-based heat sinks for thermal management of electronic systems

Authors: Muhammad Aamer Hayat; Changhe Li; Muhammad Mansoor Janjua; Hafiz Muhammad Ali; William Pao; Mostafa Alizadeh;

Phase change material/heat pipe and Copper foam-based heat sinks for thermal management of electronic systems

Abstract

Abstract Phase change material (PCM) has been extensively used for their thermal management but due to low conductivity that hinders the performance of a system. Since heat pipe and porous materials both have high thermal conductivities, they can be used to form hybrid system with PCM which significantly enhance the heat transfer capability of PCM. In current research of heat pipe, copper foam (pore density 40PPI and porosity 93%) and PCM based heat sinks are used to inspect the thermal performance of heat sink with respect to time by varying heat fluxes. ‘‘RT-35HC” PCM, copper foam and gravity assisted heat pipe with and without cooling fan are used in experimental investigation. The results showed after 6000 s when charging ends hybrid cooling (Foam-PCM-HP) with fan have maximum temperature reduction i.e. 47%, 51% and 54% at heat flux of 2, 2.5 and 3 kW/m2 respectively. Similarly, for discharging hybrid cooling with fan showed excellent cooling results at all heat fluxes.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    82
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
82
Top 1%
Top 10%
Top 1%