
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A polyethylene glycol-based form-stable phase change material supported by nanoarray-modified metal foam

Abstract We fabricated a nanoarray-modified nickel foam utilized as the supporting material for polyethylene glycol (PEG) to prepare a form-stable phase change material (PCM). The nanoarrays on the skeleton of the nickel foam look like flowers and can act as the nucleating agent, giving rise to the heterogeneous nucleation of the material. The nanoarray-modified nickel foam-supported PCM (NAPCM) has high latent heat values, which are 132.1 and 135.8 J·g−1 in the melting and solidification processes respectively, showing outstanding thermal energy storage capacity. The thermal properties including the latent heat values of the NAPCM after 100 times of thermal cycling are almost unchanged compared with the original one. Moreover, the thermal conductivity of the NAPCM increases by 157.4% and the super cooling degree decreases by 35.3% compared with pure PEG. The NAPCM with low super cooling, high latent heat values and thermal conductivity shows great potential for thermal energy utilization.
- North Sichuan Medical University China (People's Republic of)
- China West Normal University China (People's Republic of)
- Sichuan University China (People's Republic of)
- China West Normal University China (People's Republic of)
- North Sichuan Medical University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
