Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith University:...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Energy Storage
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reduced graphene oxide nanofluidic electrolyte with improved electrochemical properties for vanadium flow batteries

Authors: Aberoumand, Sadegh; Dubal, Deepak; Woodfield, Peter; Mahale, Kiran; Pham, Hong Duc; Padwal, Chinmayee; Tung, Tran; +2 Authors

Reduced graphene oxide nanofluidic electrolyte with improved electrochemical properties for vanadium flow batteries

Abstract

Development of the Vanadium Redox Flow Battery (VRFB) has been widely reported but typically only focuses on one part of the cell (e.g. electrode, electrolyte, or membrane). Improvement to a single part of the cell may cause side effects on other parts during long-term cycling leading to an overall drop in the performance of the battery. To avoid this, the use of nanofluidic electrolyte seems to be a promising approach to enhance the performance of both electrode and electrolyte simultaneously. This paper aims to investigate the electrochemical performance of a newly prepared reduced graphene oxide (rGO) nanofluidic vanadium electrolyte, applicable for Vanadium Redox Flow Batteries (VRFB). Herein, we report for the first time a stable rGO/vanadium nanofluidic electrolyte with improved electrochemical performance. Benefiting from the low degree of oxidation as compared to GO, the rGO can provide high electrical conduction due to the presence of sufficient functional groups, which can facilitate the redox reactions. The effect of various concentrations of rGO on the electrochemical performance is investigated. The current collector (carbon cloth (CC) electrode) was further characterized using different physico-chemical techniques to underpin the stability of rGO nanofluids. The results suggested that the electrochemical performance of vanadium electrolyte increases with the concentration of rGO. Improvements of approx. 15% to 20% were achieved in peak potential separation and current density rates, respectively. In addition, the incorporation of rGO in nanofluidic electrolyte significantly decreases the electrolyte and charge transfer resistance by ∼10% and ∼99%, respectively, and improves the vanadium ion diffusion process by ∼50%.

Country
Australia
Keywords

Technology, Science & Technology, Electrochemical behavior, Energy & Fuels, 600, Nanofluidic electrolyte, 540, Engineering, Vanadium flow battery, Reduced graphene oxide

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
Green