Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Energy St...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Energy Storage
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heat transfer of a large-scale water pit heat storage under transient operations

Authors: Xiang, Yutong; Gao, Meng; Furbo, Simon; Wang, Dengjia; Tian, Zhiyong; Fan, Jianhua;

Heat transfer of a large-scale water pit heat storage under transient operations

Abstract

An accurate and less time demanding model is required when integrating pit thermal energy storage (PTES) into solar heating systems. Multi-node (1D) models are commonly used, but these models face challenges when calculating PTES thermal stratification and heat loss. Therefore, a full-scale computational fluid dynamics (CFD) model of PTES inclusive water and soil regions is developed using FLUENT to improve the accuracy of heat transfer calculation of a multi-node model. The CFD model is validated against the Dronninglund PTES measurements regarding PTES thermal stratification, inlet/outlet energy flow, and soil temperature distribution. The model corresponds well to the measurements in three aspects: (i) a maximum temperature difference of 1 K in the water region; (ii) a maximum temperature difference of 2 K in the soil region; (iii) a maximum outlet temperature difference of 3 K. An indicator RΔT/δ defined as the ratio between the thermocline temperature difference and the thermocline thickness is proposed to assess suitable grid size for PTES models, and the quantitative relationship between RΔT/δ and grid size is recommended. Investigations with a range of grid sizes show that by using the recommended grid size, the prediction accuracy of the multi-node model TRNSYS Type 343 is significantly improved. The root mean square deviations of the predicted MIX number are decreased by 11–43 % for different years, and the relative differences of the monthly charge/discharge energy from the measurement are within 5 %. The findings of this study provide guidance for selecting appropriate grid sizes to achieve better calculation accuracy for large-scale PTES.

Country
Denmark
Keywords

Thermal stratification, Computational fluid dynamics, Grid size, Thermocline, Multi-node model, Pit thermal energy storage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green
hybrid