Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Energy St...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Energy Storage
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BULERIA
Article . 2023
License: CC BY NC ND
Data sources: BULERIA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BULERIA
Article . 2023
License: CC BY NC ND
Data sources: BULERIA
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Charge storage capacity of electromethanogenic biocathodes

Authors: Carrillo Peña, Daniela Andrea; Pelaz Guerra, Guillermo; Mateos González, Raúl; Escapa González, Adrián;

Charge storage capacity of electromethanogenic biocathodes

Abstract

[EN] Methanogenic biocathodes (MB) can convert CO2 and electricity into methane. This feature, that allows them to potentially be used for long-term electrical energy storage, has aroused great interest during the past 10 years. MB can also operate as biological supercapacitors, a characteristic that can be exploited for short-term energy storage and that has received much less attention. In this study, we investigate the electrical charge storage capabilities of carbon-felt-based MB modified with graphene oxide. The charge-discharge experiments revealed that the potential of the electrode plays an important role during the discharging period: low potentials (−1.2 V vs Ag/AgCl) created an inrush of faradaic current that masked any capacitive current. At more positive potentials (−0.8 V vs Ag/AgCl), the biological electrodes were outperformed by the abiotic electrodes, and only when the potential was set at −1.0 V vs Ag/AgCl the graphene-modified biological electrode showed its superior charge storage capacity. Overall, results indicated that the graphene modification is crucial to obtain bioelectrodes with improved capacitance: untreated bioelectrodes showed a charge storage capacity inferior to that measured in the abiotic electrodes. SI MCIN/AEI/10.13039/501100011033 European Union NextGenerationEU/PRTR

Country
Spain
Keywords

Energy storage, 3303 Ingeniería y Tecnología Químicas, Capacitance, Ingeniería química, Charge storage, Química, Biocathodes, 3302.90 Ingeniería Bioquímica

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid
Related to Research communities
Energy Research