Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Techno...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Technology & Innovation
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

A hybrid anaerobic and microalgal membrane reactor for energy and microalgal biomass production from wastewater

Authors: orcid Vu, Minh T.;
Vu, Minh T.
ORCID
Harvested from ORCID Public Data File

Vu, Minh T. in OpenAIRE
Vu, Hang P.; orcid Nguyen, Luong N.;
Nguyen, Luong N.
ORCID
Harvested from ORCID Public Data File

Nguyen, Luong N. in OpenAIRE
Semblante, Galilee U. (R20112); Johir, Mohammad A. H.; orcid Nghiem, Long D.;
Nghiem, Long D.
ORCID
Harvested from ORCID Public Data File

Nghiem, Long D. in OpenAIRE

A hybrid anaerobic and microalgal membrane reactor for energy and microalgal biomass production from wastewater

Abstract

Abstract In the concept of a circular economy, wastewater is no longer waste but a resource for water, energy and nutrients. In this study, a hybrid system containing an anaerobic membrane bioreactor (AnMBR) and a microalgal membrane reactor (MMR) was developed to harvest energy, nutrients, and microalgal biomass from food and agribusiness industrial wastewater. The AnMBR removed over 97% of chemical oxygen demand (COD) and generated 4.7 ± 0.15 L (n=80) of biogas equivalent to 2.4 kWh kg−1 COD (feed) d−1. Through anaerobic metabolism, the microorganism in AnMBR generated NH 4 + and PO 4 3 − -rich effluent. Their effluent concentrations were 1.9 and 1.4 times of that in the influent, respectively. NH 4 + and PO 4 3 − -rich effluent was directly used (i.e. without filtration or sterilization) to culture microalgae Chlorella vulgaris in the MMR. . Microalgal biomass production reached up to 700 mg/L after 6 days of operation and nutrient removal rates of above 75% were achieved. However, biomass production and nutrient removal declined towards the end of experiment. The generated biomass was completely harvested using cationic polyacrylamide at the dose of 36 mg g−1 dry weight. Overall, the AnMBR has great potential to produce energy. Future research is needed to intensify the microalgal growth (e.g. genetic modification of strains, addition of plant hormones) in the MMR for continuous operation of the hybrid system.

Keywords

660, membrane bioreactor, XXXXXX - Unknown, wastewater treatment and reuse, membrane reactors, biogas, polyacrylamide

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 1%
Top 10%
Top 1%
Green
gold