
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Experimental evaluation of a membrane contactor unit used as a desorber/condenser with water/Carrol mixture for absorption heat transformer cycles

Abstract A conventional desorber in the Absorption Heat Transformer (AHT) cycle requires a constant heat flux and vacuum pressure conditions to boil the working mixture and separate the working fluid. In this paper, an Air Gap Membrane Distillation (AGMD) unit was adapted as desorber/condenser with water/Carrol mixture in order to demonstrate the feasibility of the desorption process at atmospheric pressure conditions. Two membranes with 0.22 and 0.45 μm pore sizes were used and three temperature levels were tested. The maximum increase in the concentration (Δ X ) was 1.54% w/w (from 60.63 to 62.17% w/w) with a membrane with pore size up to 0.45 μm and a solution temperature of 82.7 °C. The maximum thermal process effectiveness was 17.7% (on average) with a membrane with pore size up to 0.22 μm and a solution temperature of 84.4 °C. Due to the corrosion process, a fouling particle by iron oxide was found on the membrane; this fouling layer could promote the “wetting” process in the membrane after a long operating time.
- Universidad Da Vinci Mexico
- Universidad Autónoma del Estado de Morelos Mexico
- Consejo Nacional de Ciencia y Tecnología Guatemala
- Universidad Da Vinci Mexico
- Consejo Nacional de Ciencia y Tecnología Guatemala
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
