Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2018
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Thermal and Fluid Science
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2018
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evidence of sub-10 nm particles emitted from a small-size diesel engine

Authors: Mariano Sirignano; Marielena Conturso; Agnese Magno; Silvana Di Iorio; Ezio Mancaruso; Bianca Maria Vaglieco; Andrea D'Anna;

Evidence of sub-10 nm particles emitted from a small-size diesel engine

Abstract

Particle size distributions (PSDs) are measured at the exhaust of a diesel engine burning a sulphur-free diesel fuel and a blend of the fuel with a rapeseed methyl-ester. Different operating conditions of load and engine speed are analyzed. Particles with sizes ranging from few nanometers up 1 ?m are generated during combustion in the engine. Operating conditions and fuel characteristics strongly affect the PSDs confirming that particles are generated from fuel oxidation and pyrolysis rather than from the oxidation of lube oil or from other sources in the engine. The higher is the engine load, the higher the emission of mass concentration of particulate matter but the lower their number concentration. At fixed engine loads, the increase of the engine speed produces more particles and with larger mean sizes. The use of the biofuel blended with a commercial fuel reduces the total mass concentration of particulate matter but strongly increases the number concentration of sub-10 nm particles

Country
Italy
Keywords

Fluid Flow and Transfer Processes, Diesel engine, Mechanical Engineering, Aerospace Engineering, Sub-10 nm particles, Particle size distribution, ultrafine particles, biofuel; Diesel engine; particle size distribution; sub-10 nm particles; ultrafine particles; Chemical Engineering (all); Nuclear Energy and Engineering; Aerospace Engineering; Mechanical Engineering; Fluid Flow and Transfer Processes, Nuclear Energy and Engineering, Ultrafine particles, Biofuel, biofuel, Chemical Engineering (all), particle size distribution, sub-10 nm particles

Powered by OpenAIRE graph
Found an issue? Give us feedback