Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Experimental Thermal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Experimental Thermal and Fluid Science
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Thermal and Fluid Science
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Measuring turbocharger compressor inlet backflow through particle image velocimetry

Authors: Alberto Broatch; R. Cheung; J. García-Tíscar; R. K. Sharma; José V. Pastor; Antonio J. Torregrosa;

Measuring turbocharger compressor inlet backflow through particle image velocimetry

Abstract

[EN] An experimental measurement campaign is presented where particle image velocimetry (PIV) was used in an effort to characterize the velocity field in a turbocharger compressor when unstable operating conditions lead to flow reversing from the diffuser into the inlet pipe. Previous studies have successfully used this and similar techniques, but the most relevant results have been obtained in an open compressor where the backflow can diffuse into the ambient. In this work a glass pipe long enough to confine the full extent of the backflow has been used. Advantage was taken from the fact that this backflow is at higher temperature due to the compression process, enabling a preliminary work where a thermocouple array was used to estimate its maximum length across the compressor map. Using these results as a reference both axial and transversal velocity fields were measured. Issues associated with each one are described, along with relevant results that show how the technique correctly identifies the reversed flow, a conclusion that is supported by the comparison of the velocity average and standard deviation profiles with those of measured temperature. This work has been partially supported by Jaguar Land Rover Limited, Abbey Road, Whitley, Coventry CV3 4LF, UK. The equipment used in this work has been partially supported by the Spanish Ministerio de Economia y Competitividad through grant no DPI2015-70464-R and by FEDER - EU project funds "Dotaciem de infraestructuras cientifico tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte (CiMeT), (FEDER-ICTS-2012-06)" framed in the operational program of unique scientific and technical infrastructure of the Spanish Ministerio de Economia y Competitividad. J. Garcia-Tiscar was partially supported through contract FPI-S22015-1530 of the Programa de Apoyo para la Investigacion y Desarrollo (PAID) of Universitat Politecnica de Valencia.

Keywords

Stall, Automotive, INGENIERIA AEROESPACIAL, Turbomachinery, NVH, Surge, MAQUINAS Y MOTORES TERMICOS, Flow visualization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 43
    download downloads 149
  • 43
    views
    149
    downloads
    Data sourceViewsDownloads
    RiuNet43149
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
5
Average
Average
Top 10%
43
149
Green
hybrid