Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Forest Ecosystemsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Forest Ecosystems
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Forest Ecosystems
Article . 2025
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Forest Ecosystems
Article . 2025
License: CC BY NC ND
Data sources: u:cris
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Droughts and windstorms due to climate change increase variability in species and trait composition of a subtropical monsoon evergreen broadleaf forest in China

Authors: Wenjing Chen; Lei Liu; Daijun Liu; Josep Penuelas; Guoyi Zhou; Zhen Yu; Anchi Wu; +2 Authors

Droughts and windstorms due to climate change increase variability in species and trait composition of a subtropical monsoon evergreen broadleaf forest in China

Abstract

Background: Climate change is accelerating alterations in forest species and community composition worldwide, especially following extreme events like severe droughts and windstorms. Understanding these effects on subtropical forests is crucial for conservation and forest management, but it remains unclear whether the impacts are stochastic or deterministic. Methods: We analyzed a unique dataset from a 1-ha permanent plot in a subtropical monsoon broadleaf evergreen forest in China, monitored over 26 years with six surveys from 1994 to 2020. The forest has been free from anthropogenic disturbances for over 400 years. In each survey, we measured all trees with a diameter at breast height (DBH) ​≥ ​1 ​cm, and recorded 11 plant functional traits relating to photosynthesis, wood properties, water use, and nutrient dynamics. Using this data, we calculated species and trait dispersion, assessing short-term (∼5 years) and long-term (26 years) trends in species and trait composition following severe droughts and windstorm events. Results: Severe droughts, and subsequent droughts, increased both species and trait dispersion, while species composition converged, and trait dispersion remained relatively stable throughout the recovery period. Windstorm events led to increased species dispersion but decreased trait dispersion. We observed a clear directional shift in both species and trait composition under these climatic stressors, with a more pronounced increase in trait dispersion compared to species dispersion. Conclusion: In the short term (∼5 years), severe droughts and windstorms increased species composition divergence, while trait composition responses varied. Over 26 years, deterministic processes mainly drove community composition changes, especially for trait composition, although stochastic processes also played a role. These findings suggest enhancing forest resilience to climatic stressors by protecting adaptive species or increasing species diversity in management practices.

Country
Austria
Related Organizations
Keywords

Ecology, SDG 13 – Maßnahmen zum Klimaschutz, SDG 13 - Climate Action, Community composition, Deterministic processes, Climate change, 401205 Forestry, Community dynamics, Functional traits, QH540-549.5, 401205 Forstwirtschaft

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research