Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of two-phase flow mixing mechanism of a swirl burner using an electrostatic sensor array system

Authors: Yong Yan; Yong Yan; Kefa Cen; Hao Zhou; Kang Dong; Yu Yang; Xiangchen Qian; +1 Authors

Investigation of two-phase flow mixing mechanism of a swirl burner using an electrostatic sensor array system

Abstract

A novel electrostatic sensor array was designed to measure particle concentration downstream of a swirl burner. The fundamental mechanism and the primary constituent elements of the sensor array were described. The root-mean-square magnitude of the measured electrostatic voltage was determined as an indication of the particle concentration. The accuracy of the electrostatic sensor array was calibrated by the optical fluctuation method. Local particle concentrations at different cross-sections of the measuring chamber were measured to investigate the diffusion characteristic of the pulverized coal particles. Electrostatic sensor array showed its ability in the field measurement in this work. The measurements indicated that the velocity of the inner secondary air had a significant effect on the diffusion of the pulverized coal particles. The particles concentrated in the center of the cross-section after leaving the burner. With the development of the gas–solid two-phase flow, the particles distributed like a ring shape. The radius of the particle ring increased with the increase of the velocity of the inner secondary air. But the effect of the velocity of outer secondary air on the radius of the particle ring is very slight. The maximum radius occurred when the velocity of inner secondary air was 21 m/s, which was favorable for stable combustion.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average