Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Food Chemistryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Food Chemistry
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Incubation tests mimicking fermentation reveal that phytate breakdown is key to lower the cadmium concentrations in cacao nibs

Authors: Ruth, Vanderschueren; Florence, Helsen; Jasmien, Doevenspeck; Jan A, Delcour; Erik, Smolders;

Incubation tests mimicking fermentation reveal that phytate breakdown is key to lower the cadmium concentrations in cacao nibs

Abstract

Earlier studies revealed that cadmium (Cd) concentrations in cacao nibs can decrease by a factor up to 1.3 during fermentation. Here, fermentation was mimicked by incubating beans at different temperatures, and acetic acid and ethanol concentrations in the incubation media. Nib Cd concentrations decreased during incubation by mobilisation in the nibs and subsequent outward migration to the testa and the incubation solution. This was most pronounced when high concentrations of acetic acid were combined with high temperature, while ethanol had no statistically significant effect. Incubation under typical fermentation conditions (45 °C and 20.0 g acetic acid L-1) reduced the nib Cd concentration by a factor 1.3. This factor increased to 1.6 under more extreme conditions, i.e. 65 °C and 40 g acetic acid L-1. The final nib Cd concentrations correlated well to nib phytate concentrations (R2 = 0.56), suggesting hydrolysis of phytate and mobilisation of the associated Cd2+.

Related Organizations
Keywords

Cacao, Ethanol, Phytic Acid, Fermentation, Acetic Acid, Cadmium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%