Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Food Chemistryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Food Chemistry
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cold plasma: A nonthermal pretreatment, extraction, and solvent activation technique for obtaining bioactive compounds from agro-food industrial biomass

Authors: Kishan Kishor, Gupta; Winny, Routray;

Cold plasma: A nonthermal pretreatment, extraction, and solvent activation technique for obtaining bioactive compounds from agro-food industrial biomass

Abstract

The present review provides a comprehensive overview of cold plasma treatment and its applications in solvent activation and bioactive component extraction. The study has summarized the principles, types, uses, and mechanisms of cold plasma treatment in activating various solvents, extracting biomolecules, and affecting the characteristics of the extracted compound. This review also explores the environmental benefits of implementing this sustainable technology, highlighting the influence of key parameters such as gas type, treatment time, voltage, and plasma flow rate on the extraction process, providing insights into optimizing these conditions for maximum efficiency. In addition, future trends and research needs for advancing cold plasma-assisted extraction have also been proposed. All biomolecules exhibit specific characteristics; still, the influence of cold plasma treatment varies depending on treatment parameters and product properties, including the source material utilized in the extraction process. Most research has shown that cold plasma treatment can cause cell disruption due to reactive species generation and enhances solvent penetration; thereby, it helps in improving extraction yield with negligible effects on characteristics. With the growing demand for natural bioactive compounds in the nutraceutical, pharmaceutical, and food sectors, cold plasma offers a promising alternative to conventional thermal and chemical extraction techniques. This review concisely discusses the benefits and challenges of cold plasma treatment and the need for additional research.

Keywords

Plasma Gases, Plant Extracts, Solvents, Biomass, Chemical Fractionation

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research